

SENIOR PHASE

GRADE 9

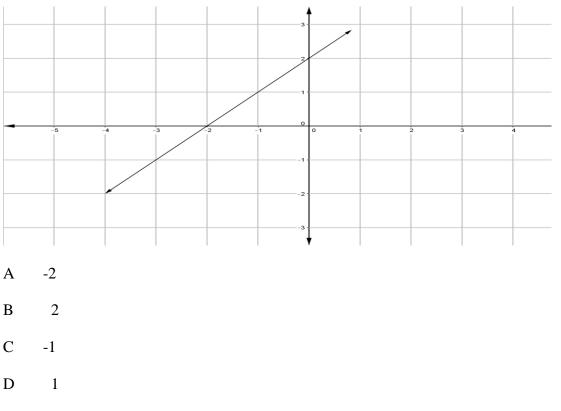
NOVEMBER 2017

MATHEMATICS

- **MARKS: 140**
- TIME: $2^{1/2}$ HOURS

This question paper consists of 17 pages including 2 annexures

INSTRUCTIONS AND INFORMATION


- 1. Read the instructions for each question carefully before answering the questions.
- 2. Answer ALL the questions.
- 3. Number your answers exactly as questions are numbered.
- 4. You may use an approved scientific calculator (non-programmable and non-graphical).
- 5. Clearly show **ALL** the calculations, diagrams and graphs you have used in determining your answers.
- 6. Diagrams are **NOT** necessarily drawn to scale.
- 7. Write neatly and legibly.

QUESTION 1

- 1. Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number Example: If the correct answer for 1.1 is A, write your answer as 1.1 A.
 - 1.1 Which ONE of the following numbers is rational?
 - A 2,3 B $\sqrt{-16}$ C π D $\sqrt[3]{53}$

1.2 The gradient of the straight line drawn below is:

1.3 The general rule (T_n) for the pattern 3; 7; 11; 15 is:

A $T_n = -4n+1$ B $T_n = 4n+1$ C $T_n = 4n-1$ D T = -4n+1

$$I_n - -4/1 +$$

Copyright reserved

(1)

(1)

1.4	When	$\frac{12m^2n - 6mn^2}{3mn}$ is simplified, the answer is:	
	A 4	4m-2n	
	B	$2m^2n^2$	
	C	$\frac{2m-n}{3}$	
	D	$\frac{2m}{-n}$	(1)
1.5	If $\frac{2x}{3}$	$\frac{-4}{3} - \frac{x}{4} = -1$, then the value of x is:	
	A	$\frac{5}{8}$	
	В	$\frac{4}{5}$	
	C	$-\frac{5}{8}$	
	D	$-\frac{4}{5}$	(1)

1.6 The following table shows the number of days a certain number of men will take to complete a task.

Number of men	1	5	10	15
Time taken in hours	20	4	x	$\frac{4}{3}$

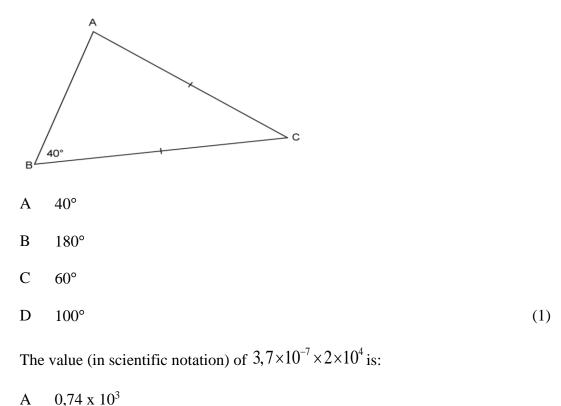
The value of x is:

8

 $\begin{array}{ccc}
A & 200 \\
B & 2 \\
C & \frac{4}{5}
\end{array}$

D

(1)

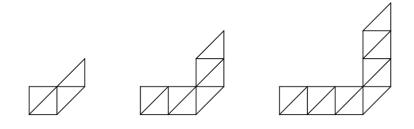

1.7 Pairs of socks are neatly packed in a drawer of a wardrobe. There are 4 pairs of black socks, 2 pairs of blue socks, 3 pairs of yellow socks and 5 pairs of white socks.

One pair of socks is taken from the drawer without looking. What is the probability of not taking a pair of white socks?

A 5 B $\frac{5}{14}$ C $\frac{9}{14}$ D $\frac{5}{9}$

(1)

1.8 In $\triangle ABC$ the size of $\angle C$ is:

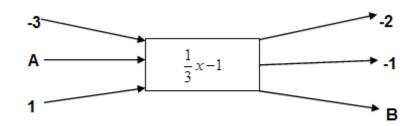

- A 0,74 X 10°
- B 7,4 x 10⁻³
- C 7,4 x 10^3
- D 74×10^{-3} (1)

1.9

6	MATHEMATICS (F	EC/NOVEMBER 2017)
1.10	The surface area of an open top cylinder, with a height of 97 circumference of its base measuring 85,9 cm, if it is expressed decimal places, it will be:	
	A 8 919,49 cm^2	
	B 8 919,49 cm^3	
	C 9 506,67 cm ²	
	D 9 506,67 cm ³	(1) [10]
QUESTIO	N 2	
2.1 Write	0,000 014 6 in scientific notation.	(1)
2.2 Simpl	ify:	
2.2.1	$\sqrt{0,06y^4+0,1y^4}$	(2)
2.2.2	$\frac{\sqrt[3]{x^6}}{(4x^2)^0}$	(2)
2.2.3	$\frac{(3x^4y^{-1})^2}{x^{-2} \times x^{-1}y^{-2}}$	(3)
2.2.4	$3(x-3)(x+3)-(x-1)^2$	(4)
2.2.5	$3\frac{1}{4}x - 2\frac{2}{3} \times 2\frac{1}{6}x + 4\frac{1}{2}x$	(4)
2.3 Factor	rise completely.	
2.3.1	$2x^2 + 6x - 36$	(3)
2.3.2	9x(5a-b) + 2(b-5a)	(3)
2.4 Solve	for x:	
2.4.1	(2x-3)(2x+3)=0	(2)
2.4.2	$\frac{3x-2}{7} = \frac{x-2}{3}$	(3)
2.4.3	$27.3^{x} = 1$	(3) [30]

QUESTION 3

3.1 Study the geometric pattern below and answer the questions that follow:



Figu	re 1	Figure 2	F	Figure 3
3.1.1	Refer to	the table below	and write down	the value of p and q

2 3 Figure 1 4 4 Number of Triangles 8 pq(1)3.1.2 Determine the general rule (T_n) of the pattern. (1)3.1.3 Use the rule obtained in **question 3.1.2** to determine which figure will have 120 triangles. (3) 3.2 A straight line graph is defined by y = 2x - 43.2.1 (2)Determine the X - intercept of the graph. 3.2.2 Determine the Y - intercept of the graph. (1)3.2.3 Draw the graph showing all your intercepts with the axes. Use ANNEXURE 1. (3) 3.3 On the same system of axes (use ANNEXURE 1) to draw the graph of x = 4. (2)3.4 Find the value of y when the graphs of y = 2x - 4 and x = 4 intersect. (1)

3.5 Read the flow diagram below and answer the questions that follow:

Input values *x* Output values *y*

- 3.5.1 What is the input value in **A**?
- 3.5.2 What is the output value in **B**? Copyright reserved

7

Please turn over

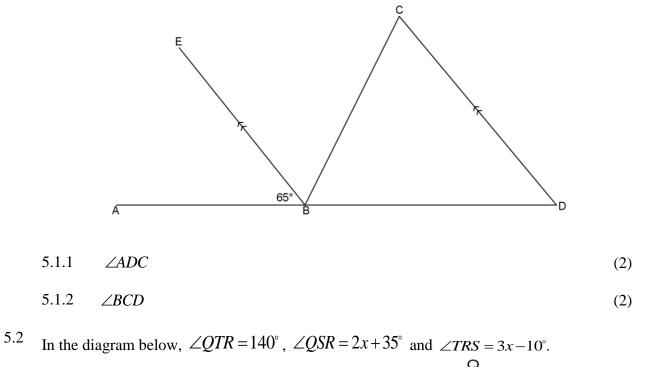
(2)

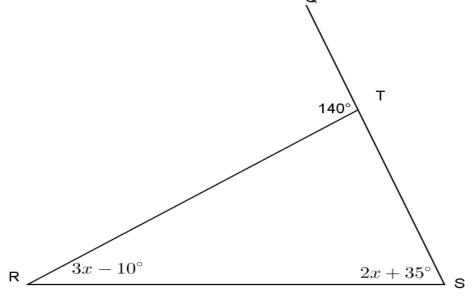
(2)

3.6 Use the table below to answer the questions that follow:

X	-1	0	1	2	 т
У	-5	-3	-1	1	 21

3.6.1	Find the rule in the form $y = \dots$	(2)
3.6.2	Determine the value of <i>m</i> .	(2) [22]

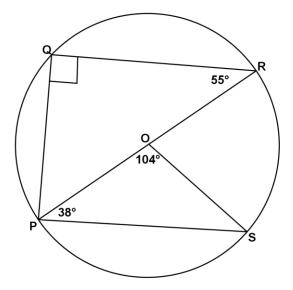

QUESTION 4


4.1	Craig invests $R15\ 000$ for 3 years at 16% per annum compound interest. Calculate the interest he receives after 3 years.	(3)
4.2	The combined ages of a father and his son are 36. In seven years' time the father will be four times as old as his son. Find their current ages.	(5)
4.3	A certain distance is covered in 3 hours at an average speed of $120km/h$. How long will it take to cover the same distance at an average speed of $90km/h$?	(4) [12]

9

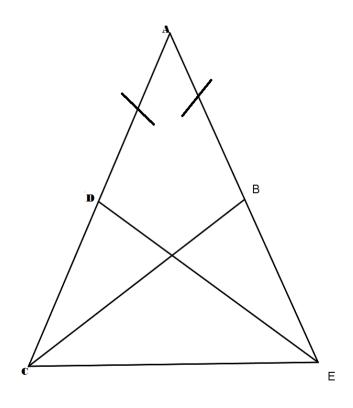
QUESTION 5

5.1 In the diagram $\angle ABE = 65^\circ$. EB ||CD and $\angle ABE = \angle EBC$. Find with reasons, the size of:

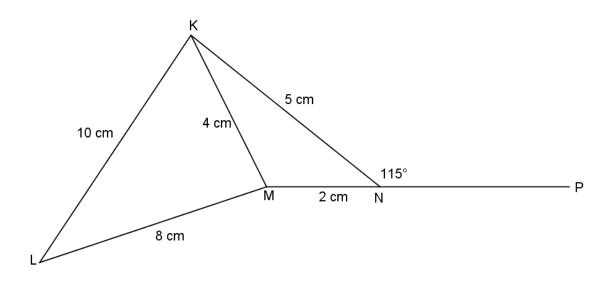


5.2.1	Calculate the value of X . Give reasons for your answer.	(4)

5.2.2 Calculate the actual size of $\angle QSR$. (2)


5.3 In the figure below, O is the centre of the circle. $\angle OPS = 38^\circ$, $\angle POS = 104^\circ$ and $\angle PRQ = 55^\circ$.

5.3.1	Calculate the size of $\angle QPR$. Give a reason for your answer.	(2)
5.3.2	Calculate the size of $\angle PSO$. Give a reason for your answer.	(2)

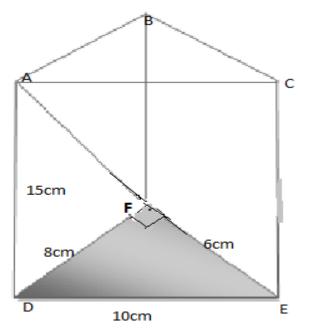

QUESTION 6

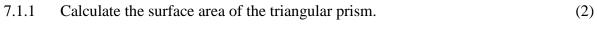
6.1 In the figure, AD = AB and CD = BE. Prove that $\triangle ABC \equiv \triangle ADE$.

[14]

6.2 KN = 5 cm, MN = 2 cm, KM = 4 cm, LM = 8 cm and KL = 10 cm.

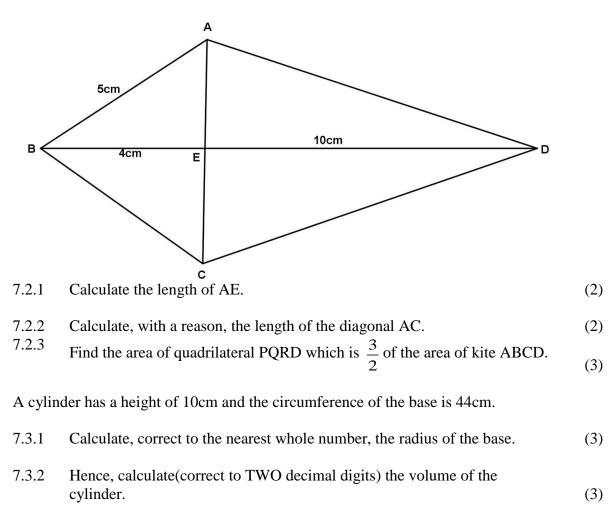
^{6.2.1} Prove that $\Delta MNK \parallel \Delta MKL$


6.2.2 Calculate the actual size of ∠*LKM* if it is given that MNP is a straight line.
(3) [11]


⁽⁴⁾

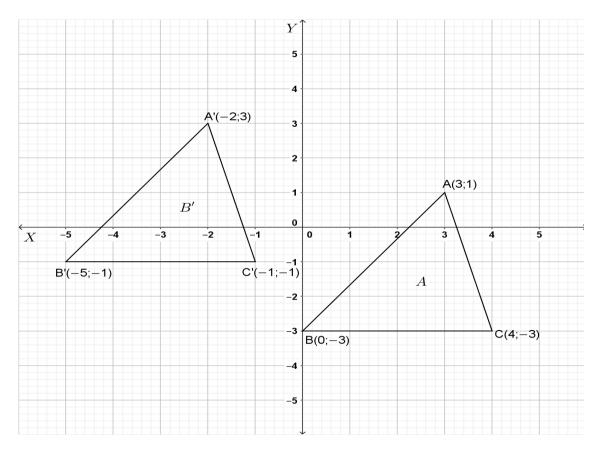
(3)

QUESTION 7


7.1 A triangular prism is shown in the figure below. The base is a right-angled triangle with DF = 8 cm, DE = 10 cm FE = 6 cm, and the height 15 cm.

7.1.2 Calculate the volume of the triangular prism.

7.2 A diagram of a kite, ABCD with AB = 5 cm, BE = 4cm, and DE = 10 cm, is given below.



[18]

7.3

QUESTION 8

8.1 Study the diagram given below and answer the questions based on it.

8.1.1 State the rule of the transformation indicated above in the form $(x; y) \rightarrow (\dots, \dots)$

- 8.1.2 Enlarge $\triangle ABC$ by a scale factor of 2 and give the coordinates of the vertices of $\triangle A^{\prime l} B^{\prime l} C^{\prime l}$. (2)
- ^{8.2} P(-2; 2), Q(-2; -2), and R(-3; -2) are the vertices of $\triangle PQR$.
 - 8.2.1 Plot the points P(-2; 2), Q(-3; -2), and R(2; 0) to form ΔPQR . (2)
 - 8.2.2 Reflect $\triangle PQR$ in the line y = x to form $\triangle P'Q'R'$. (3)

[10]

QUESTION 9

9.1 There is a blue pencil, a red pencil, two green rulers and a white ruler on a desk. A pencil and a ruler is taken at random.

9.1.1	Draw a tree diagram to show all possible outcomes.	(2)
9.1.2	What is the probability that a red pencil and a green ruler are taken?	(1)

- 9.1.3 What is the probability that a white pencil and a red ruler are taken? (1)
- 9.2 The table shows the marks(in percentage) obtained by 12 learners in a Maths test and a Natural Science test.

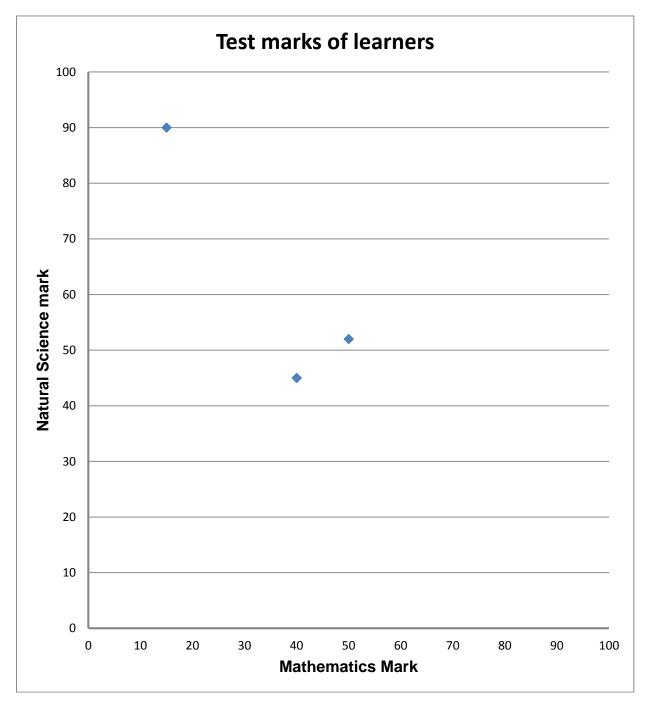
Maths	5	15	40	50	62	65	68	70	75	80	85	88	90	
Natur	al Science	90	45	52	70	65	70	65	80	75	90	80	40	
9.2.1	Represent t	he da	ta in a	a scat	ter plo	ot. U	se AN	INEX	KURE	2.				(3)
9.2.2	Identify ON	JE po	ssible	outli	er.									(1)
9.2.3	Compare th Science for			-	etwee	n per	forma	ince i	n Mat	thema	atics a	ind Na	atural	(1)
Decem	llowing data ber over a 10 22 23 X) day j	perio	1.		•	eople	who	visite	d a fa	rm sta	all du	ring	
9.3.1	If the media	an of	the da	ta is	27, de	eterm	ine th	e valı	ue of	<i>x</i> .				(2)
9.3.2	Determine	the m	ean o	f the	data									(2) [13]
										GF	RANI) TO	TAL:	140

ANNEXURE 1

QUESTION 3.2.3

NAME:

SURNAME: _____


					/	Y						
					5							
					4							
					3							
					2			<u>}</u>				
					1							
												$\mathbf{>}$
←	-5	-4	-3	-2	-1	0	1	2	3	4	5	≻ X
<	-5	-4	-3	-2	-1 -1	0	1	2	3	4	5	> X
<	-5	-4	-3	-2		0	1	2	3	4	5	→ X
	-5	-4	-3	-2	-1	0	1	2	3	4	5	➤
	-5	-4	-3	-2	-1	0	1	2	3	4	5	> X
	-5	-4	-3	-2	-1 -2 -3	0	1	2	3	4	5	➤

ANNEXURE 2

QUESTION 9.2.1

NAME:

SURNAME: _

SENIOR PHASE

GRADE 9

NOVEMBER 2017

MATHEMATICS MARKING GUIDELINE

MARKS: 140

This marking guideline consists of 11 pages.

INSTRUCTIONS AND INFORMATION

- 1. Give full marks for answers only, unless stated otherwise.
- 2. Accept any alternate correct solutions that are not included in the memorandum.
- 3. Underline errors committed by learners and apply Consistent Accuracy (CA).
- 4. THE FINAL MARK MUST BE CONVERTED TO 100.

	KEYS	
М	Method	
CA	Consistent Accuracy	
А	Accuracy	
S	Statement	
SF	Substitution in Formula	
R	Reason	
S/R	Statement and Reason	

Total
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1) [10]

QUEST	TION 2 [30 marks]		
Ques.	Solution	Mark allocation	Total
2.1	$0,000\ 014\ 6 = 1,46 \times 10^{-5} \checkmark \mathbf{A}$	Answer : 1	(1)
2.2.1	$ \frac{\sqrt{0,06y^{4}+0,1y^{4}}}{\sqrt{0,06y^{4}+0,1y^{4}}} = \sqrt{0,06y^{4}+0,1y^{4}} = \sqrt{100y^{4}} \checkmark \mathbf{A} = 0,4y^{2} \checkmark \mathbf{A} $ $ = 0,4y^{2} \checkmark \mathbf{A} $ $ OR = \sqrt{\frac{16}{100}y^{4}} \checkmark \mathbf{A} = \frac{2}{5}y^{2} \checkmark \mathbf{A} $	$\sqrt{0,16y^4} / \sqrt{\frac{16}{100}y^4} : 1Mark$ <i>Answer: 1 Mark</i>	(2)
2.2.2	$\frac{\sqrt[3]{x^6}}{(4x^2)^0} = \frac{x^2}{1} = x^2 \checkmark \mathbf{A}$	x ² : 1 <i>Mark</i> Answer : 1 Mark	(2)
2.2.3	$\frac{(3x^{4}y^{-1})^{2}}{x^{-2} \times x^{-1}y^{-2}} \mathbf{M}$ = $\frac{9x^{8}y^{-2}}{x^{-3}y^{-2}} \mathbf{M}$ = $9x^{11} \mathbf{C} \mathbf{A}$	$9x^{8}y^{-2}:1Mark$ $x^{-3}y^{-2}:1Mark$ Answer: 1 Mark	
2.2.4	$3(x-3)(x+3) - (x-1)^{2}$ $\checkmark M \qquad \checkmark M$ $= 3(x^{2}-9) - (x^{2}-2x+1)$ $= 3x^{2}-27 - x^{2} + 2x - 1 \checkmark A$ $= 2x^{2} + 2x - 28 \checkmark CA$	$x^{2}-9:1Mark$ $x^{2}-2x+1:1Mark$ $3x^{2}-27-x^{2}+2x-1:1Mark$ $2x^{2}+2x-28:1Mark$	(4)
2.2.5	$3\frac{1}{4}x - 2\frac{2}{3} \times 2\frac{1}{6}x + 4\frac{1}{2}x$ $= \frac{13x}{4} - \frac{52x}{9} + \frac{9x}{2} \checkmark \mathbf{M}$ $= \frac{117x - 208x + 162x}{36 \checkmark \mathbf{M}}$ $= \frac{71x}{36} \checkmark \mathbf{CA}$	$\frac{13x}{4} - \frac{52x}{9} + \frac{9x}{2} : 1Mark$ $117x - 208x + 162x : 1Mark$ $36 : 1Mark$ $\frac{71x}{36} : 1Mark$	
			(4)
2.3.1	$2x^{2}+6x-36 = 2(x^{2}+3x-18) \checkmark \mathbf{A}$ $\checkmark \mathbf{A} \checkmark \mathbf{A} = 2(x+6)(x-3)$	$2(x^{2}+3x-18):1Mark$ (x+6):1Mark (x-3):1Mark	(3)
2.3.2	$9x(5a-b)+2(b-5a)$ $\checkmark M$ $=9x(5a-b)-2(5a-b)$ $\checkmark A \checkmark A$	9x(5a-b)-2(5a-b): 1Mark $(5a-b): 1Mark$ $(9x-2): 1Mark$	
	=(5a-b)(9x-2)		(3)

0.4.4			l1
2.4.1	(2x-3)(2x+3) = 0 $\therefore x = \frac{3}{2} \text{or} \therefore x = -\frac{3}{2} \mathbf{A}$	Answer: 1 mark	
	2√A 2√A	Answer: 1 mark	
	$\therefore x = \frac{5}{2}$ or $\therefore x = -\frac{5}{2}$		
	2 2 2		
			(2)
2.4.2	3x-2 x-2	× by LCM: 1Mark	
	$\frac{3x-2}{7} = \frac{x-2}{3}$		
	(3r-2) $(r-2)$ M	9x - 6 = 7x - 14: 1Mark	
	$21\left(\frac{3x-2}{7}\right) = 21\left(\frac{x-2}{3}\right) M$	Answer: 1 mark	
	$\therefore 3(3x-2) = 7(x-2)$		
	$\therefore 9x - 6 = 7x - 14 \checkmark \mathbf{M}$		(3)
	$\therefore 2x = -8$		``
	$\therefore x = -4\sqrt{CA}$		
2.4.3	$27.3^{x} = 1$		
	~ 1 /M	$\therefore 3^x = \frac{1}{27}$: 1Mark	
	$\therefore 3^{*} = \frac{1}{27}$ VI	$3^{x} = 3^{-3} : 1Mark$	
	$\therefore 3^{x} = \frac{1}{27} \checkmark \mathbf{M}$ $\therefore 3^{x} = 3^{-3} \checkmark \mathbf{M}$	Answer: 1 mark	
		Thiswer. Thiark	
	$\therefore x = -3 \checkmark CA$		
	OR	OR	
	$27.3^{x} = 1$	$3^{3+x} = 3^0 : 1Mark$	
	$\therefore 3^3 \cdot 3^x = 1$	3+x=0:1Mark	
	$\therefore 3^{3+x} = 3^0 \checkmark M$	Answer: 1 mark	
	$\therefore 3 + x = 0$ M		(3)
	$\therefore x = -3\sqrt{CA}$		5203
			[30]

QUES	FION 3 [22 Marks]		
Ques.	Solution	Mark allocation	Total
3.1			
3.1.1	Figure1234Number of Triangles481216	12 & 16: 1Mark	(1)
3.1.2	$p = 12$ and $q = 16$ $\checkmark A$	4 <i>n</i> :1 <i>Mark</i>	
5.1.2	$T_n = 4n$	4 <i>n</i> . 1 <i>Mark</i>	(1)
3.1.3	$120 = 4n \checkmark \mathbf{M}$ $n = 30 \checkmark \mathbf{CA}$ $\therefore 30^{\text{th}} \text{ figure } \checkmark \mathbf{A}$	SF 120 : 1Mark n = 30:1Mark Answer : 1Mark	
3.2.1	y = 2x - 4 0 = 2x - 4 \checkmark M	Let y = 0 : 1 Mark Answer : 1 Mark	
3.2.2	$x = 2 \checkmark CA$ $y = -4 \checkmark A$	-4:1 <i>Mark</i>	(2)
3.2.3 & 3.3	$\begin{array}{c} & & & & \\ & & &$	3.2.3 y = 2x - 4 $x - int ercept : 1Mark$ $y - int ercept : 1Mark$ 3.3 x = 4 $x - int ercept : 1Mark$ $vertical / shape : 1Mark$	(3)
3.4	$y = 4\sqrt{A}$	Answer: 1Mark	(1)
3.5.1	$\frac{1}{3}A - 1 = -1 \checkmark \mathbf{M}$ $A = 0 \checkmark \mathbf{CA}$	$\frac{1}{3}A - 1 = -1:1Mark$ Answer: 1Mark	(2)

5

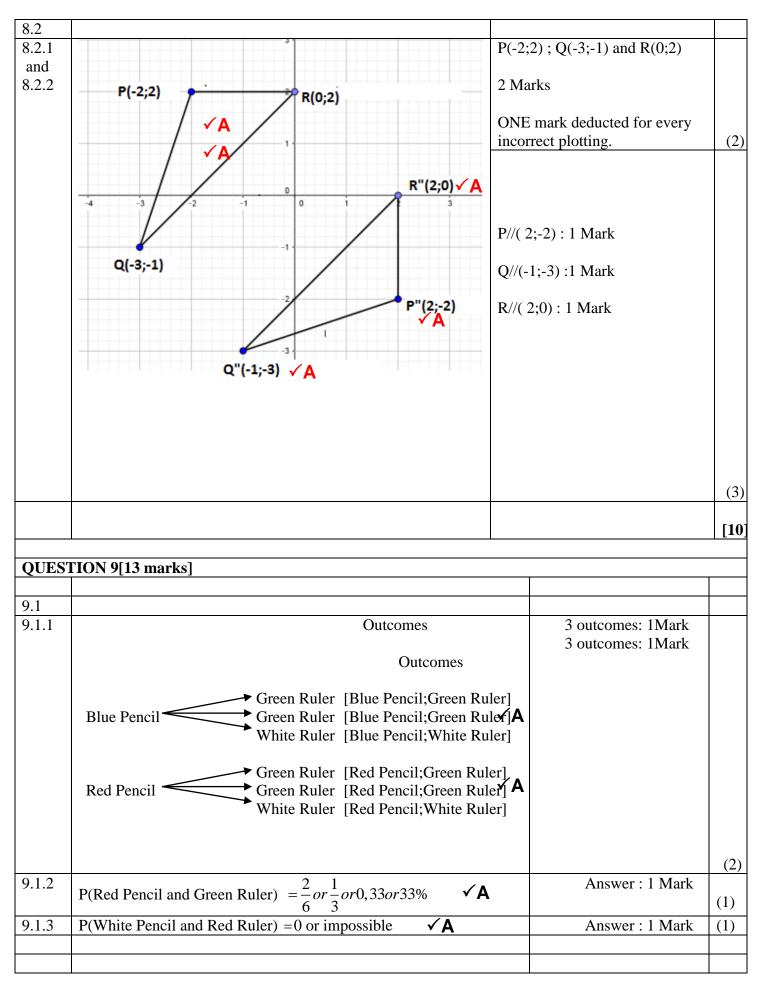
<u>6</u>

2.5.2			
3.5.2	$\frac{1}{3}(1) - 1 = B \checkmark \mathbf{A}$	$\frac{1}{3}(1) - 1 = B: 1Mark$	
		Answer : 1Mark	
	$B = -\frac{2}{3}$ CA		(2)
	Common difference = $-3-(-5)=2$	Explanation : 1 Mark	(2)
3.6.1		Answer : 1 Mark	
5.0.1	$y-\text{intercept} = -3$ Since $x = 0 \checkmark \mathbf{A}$		
	y=2x-3 A	If ANSWER ONLY	
	y = 2x - 3	Full Marks	(2)
3.6.2	$21 = 2m - 3 \checkmark M$	Substitution : 1Mark	
	$m=12\sqrt{CA}$	Answer : 1Mark	(2)
			[22]
QUES	FION 4 [12 marks]		
Ques.	Solution	Mark allocation	Total
4.1	$r = \left(r + r\right)^n \checkmark M$	Formula : 1 Mark	
	$A = P \left(1 + \frac{r}{100} \right)^n \checkmark \mathbf{M}$	Substitution : 1Mark	
		R23413,44:1Mark	
	$A = 15000 \left(1 + \frac{16}{100} \right)^3 \checkmark SF$	Answer : 1Mark	
	<i>A</i> = <i>R</i> 23413,44 ✓CA		
	Compound Interest = $R 8413, 44$ CA		(4)
4.2	Let the age of the son $= x$	x and $36 - x$: 1Mark	(')
	\therefore Age of the father = $36 - x \checkmark M$	x+7 and $43-x$: 1Mark	
	\therefore Son in 7 years time = $x + 7$	4(x+7) = 43 - x : 1Mark	
	\therefore Father in 7 years time = $43 - x$	CA Answer:1Mark	
	$\therefore 4(x+7) = 43 - x$	Both ages:1Mark	
	$\therefore 4x + 28 = 43 - x$		
	$\therefore 5x = 15$		
	$\therefore x=3$ \checkmark CA		
	Son is 3 years old and the Father is 33 years old $\checkmark CA$		(4)
4.3	$d = s \times t^{\prime} \mathbf{M}$	Formula/M :1Mark	
	$d = 120 km / h \times 3h$	360km:1Mark	
	$d = 360 km \checkmark \mathbf{A}$	$\frac{360 km}{90 km / h}$: 1Mark	
	d	$\frac{1}{90 \text{ km}/h}$: 1Mark	
	$t = \frac{1}{S}$	Answer : 1Mark	
	2601		
	90 km/h		
	$t = 4h \checkmark CA$		(4)
			[12]

QUESTION 5 [14]				
Ques.	Solution	Mark allocation		
5.1				
5.1.1	$\checkmark \mathbf{A} \qquad \checkmark \mathbf{R}$ $\angle ADC = 65^{\circ} \text{ (corresponding } \angle s, CD AB)$	Answer: 1 Mark Reason : 1 Mark	(2)	
5.1.2	$\angle EBC = 65^{\circ} \text{ (Given :} \angle ABE = \angle EBC)$ $\checkmark \mathbf{A} \qquad \checkmark \mathbf{R}$ $\angle BCD = 65^{\circ} \text{(Alternate \angle's, EB \parallel CD)}$	Answer: 1 Mark Reason: 1 Mark	(2)	
5.2				
5.2.1	$\begin{array}{c c} \checkmark \mathbf{S} & \checkmark \mathbf{R} \\ 2x + 35^{\circ} + 3x - 10^{\circ} = 140^{\circ} (\text{Exterior} \angle \text{ of } \Delta \text{RST}) \\ 5x + 25^{\circ} = 140^{\circ} & \checkmark \mathbf{A} \\ x = 23^{\circ} & \checkmark \mathbf{CA} \\ & \text{OR} \end{array}$	Statement: 1 Mark Reason: 1 Mark Simplifying: 1 Mark Answer: 1 Mark OR		
	$\angle RTS = 40^{\circ} (\angle \text{'s on a straight line} = 180^{\circ})$ $\checkmark \mathbf{S}$ $2x + 35^{\circ} + 3x - 10^{\circ} + 40^{\circ} = 180^{\circ} (\text{Sum of } 3 \angle \text{'s of } \Delta \text{RST} = 180^{\circ})$ $5x + 10^{\circ} = 140^{\circ} \checkmark \mathbf{A}$	Statement: 1 Mark Reason: 1 Mark Simplifying: 1 Mark Answer: 1 Mark		
	$x = 23^{\circ}$ \checkmark CA		(4)	
5.2.2	$\angle QSR = 2x + 35^{\circ}$ $\angle QSR = 2(23^{\circ}) + 35^{\circ} \checkmark M$ $\angle QSR = 81^{\circ} \checkmark CA$	Substitution/Method:1 Mark Answer: 1 Mark	(2)	
5.3				
5.3.1	$\checkmark \mathbf{A} \qquad \checkmark \mathbf{R}$ $\angle QPR = 35^{\circ} \left(\text{Sum of } 3 \angle s \text{ of } \Delta PQR = 180^{\circ} \right)$ OR	Answer : 1 Mark Reason : 1 Mark		
	$\checkmark \mathbf{A} \qquad \checkmark \mathbf{R}$ $\angle QPR = 35^{\circ} (Complementary \angle s)$	OR Answer : 1 Mark Reason : 1 Mark	(2)	
5.3.2	$\checkmark \mathbf{A} \qquad \checkmark \mathbf{R}$ $\angle PSO = 38^{\circ} (PO = OS, radii) \qquad \checkmark \mathbf{R}$	Answer : 1 Mark Reason : 1 Mark		
	$ \overset{\text{OR}}{\checkmark A} \checkmark R \\ \angle PSO = 38^{\circ} (PO = OS, radii) $	OR Answer : 1 Mark Reason : 1 Mark	(2)	

7

(2) [14]


QUEST	FION 6 [11 marks]		
Ques.	Solution	Mark allocation	Total
6.1	AD + DC = AB + BE $\therefore AC = AE(1)$ In $\triangle ABC$ and $\triangle ADE$ $1 \qquad AC = AE \qquad [Proved at (1)]$ $2 \qquad \angle A = \angle A \qquad [Given] \qquad \checkmark S/R$	Statement and reason: 1 mark Statement and reason: 1 mark Statement and reason: 1 mark Statement and reason: 1 mark	
6.2.1	3 $AB = AD$ [Common] ✓ S/R ∴ △ABC ≡ △ ADE SAS ✓ S/R $\frac{MN}{MK} = \frac{2}{4} = \frac{1}{2}$ ✓ S	Statement : 1 mark Statement : 1 mark	(4)
	$\frac{MK}{ML} = \frac{4}{8} = \frac{1}{2} \checkmark \mathbf{S}$ $\frac{NK}{KL} = \frac{5}{10} = \frac{1}{2} \checkmark \mathbf{S}$ $\therefore \Delta MNK \parallel \Delta MKL \text{[Corresponding sides are in proportion]}$	Statement : 1 mark Statement/Reason : 1 mark	
6.2.2	$\angle KNM = 65^{\circ} (\angle s \text{ on a straight line} = 180^{\circ} \text{/ S/R}$ $\checkmark \text{A} \qquad \checkmark \text{R}$ $\therefore MKL = 65^{\circ} [\Delta MNK \parallel \Delta MKL]$	Statement/Reason: 1 mark Answer : 1 mark Reason: 1 mark	(4)
			[11]
QUEST	FION 7 [18 marks]		
Ques.	Solution	Mark allocation	Total
7.1 7.1.1	$A = \text{Area of } 2\Delta \text{'s +Area of } 3 \text{ rectangles}$ $\checkmark SF$ $A = 2\left(\frac{1}{2} \times 8cm \times 6cm\right) + 15cm \times 10cm + 15cm \times 8cm + 15cm \times 6cm$	Substitution : 1Mark Answer : 1Mark 5cm	
	$A = 48cm^{2} + 150cm^{2} + 120cm^{2} + 90cm^{2}$ $A = 408cm^{2} A$		(2)
7.1.2	$V = \text{Area of base} \times \text{height} \checkmark \mathbf{M}$ $V = \frac{1}{2} \times 8cm \times 6cm \times 15cm \checkmark \mathbf{SF}$ $V = 360cm^3 \checkmark \mathbf{CA}$	Formula : 1Mark Substitution : 1Mark Answer : 1Mark	
	$V = 360 cm^3 \checkmark CA$		(3)

(EC/NOVEMBER 2017)

7.2			
7.2.1	$AE^2 = AB^2 - BE^2[Pythagoras]$	Substitution : 1Mark	
	$AE^{2} = (5cm)^{2} - (4cm)^{2} \checkmark \mathbf{S}$	Answer : 1Mark	
	$AE^2 = 9cm^2$		
	AE = 3cm CA		(2)
7 2 2	$EC = 3cm [AE = EC = 3cm] \checkmark R$		
7.2.2	OR ✓R	Answer : 1 Mark Reason : 1 Mark	
	EC = 3cm [AE = EC = 3cm; Diagonal BD of Kite bisects AC]	Reason . I Wark	
	$AC = 6cm \checkmark A$		(2)
7.2.3	BD = 4cm + 10cm = 14cm	Substitution : 1 Mark	
		42cm^2 : 1 Mark	
	Area of Kite ABCD = $\frac{1}{2} (14cm \times 6cm) \checkmark \mathbf{M}$	Answer : 1Mark	
	Area of Kite ABCD = $\frac{1}{2} (AC \times BD)$		
	Area of Kite ABCD = $42cm^2 \checkmark CA$		
	Area of Quadrilateral PQRD = $\left(\frac{3}{2} \times 42\right) cm^2$		
	Area of Quadrilateral PQRD = $63cm^2$ / CA		(3)
7.0			
7.3	$2\pi r = 44$ \checkmark M	$2\pi r = 44: 1Mark$	
7.3.1			
	$r = \frac{44}{2\pi} \checkmark \mathbf{M}$	$r = \frac{44}{2\pi}$: 1Mark	
	$r = 7cm \checkmark CA$	Answer : 1Mark	(3)
7.3.2	$V = \pi r^2 \times h$ \checkmark M	$V = \pi r^2 \times h : 1 Mark$	
	$A = \pi (7cm)^2 \times 44cm \checkmark \mathbf{M}$	$A = \pi (7cm)^2 \times 44cm : 1Mark$	
	$A = 6773, 27 cm^3 \checkmark CA$	Answer : 1Mark	(3)
	,		[18]
	TION 8 [10 marks]		
Ques 8 1	Solution		
8.1 8.1.1		x-5:1Mark	
0.1.1	$(x; y) \rightarrow (x-5; y+2)^{\checkmark} \mathbf{A}$	y+2:1Mark	(2)
8.1.2		$A^{ll}(6;2):1$ Mark	
	$\checkmark \mathbf{A} \qquad \checkmark \mathbf{A} \qquad \checkmark \mathbf{A} \qquad \checkmark \mathbf{A}$ A ^{ll} (6;2) and B ^{ll} (0;-6) and C ^{ll} (8;-6)	$B^{ll}(0;-6): 1$ Mark	
		$C^{ll}(8;-6): 1Mark$	(2)
		\sim (0, 0). Inturk	(3)

MATHEMATICS

(EC/NOVEMBER 2017)

9.2			
9.2.1	Test marks of learners	3 points plotted:1Mark 3 points plotted:1Mark 3 points lotted:1Mark	
	$ \begin{array}{c} 100\\ 90\\ 80\\ 70\\ 60\\ 50\\ 40\\ 30\\ 20\\ 10\\ 0\\ 20\\ 40\\ 0\\ 20\\ 40\\ 60\\ 80\\ 100\\ \hline \\ \mathbf{Maths mark}} \end{array} $		
			(3)
			1
9.2.2	(15;90) OR (90;40)	(15;90) : 1 Mark OR (90;40) : 1 Mark	(1)
9.2.3	There is a strong positive correlation. $\checkmark \mathbf{A}$ OR	Answer : 1 Mark	
	Learners who perform well in Mathematics, generally perform well in Natural Science and learners who perform poorly in Mathematics $\checkmark A$	OR	
	generally perform poorly in Natural Science.	Answer : 1 Mark	(1)
9.3			
9.3.1	$27 = \frac{x+30}{\sqrt{2}} \checkmark \mathbf{M}$ $x = 24 \checkmark \mathbf{A}$	$27 = \frac{x+30}{2} : 1Mark$	
9.3.2	x = 24	Answer : 1 Mark	(2)
9.3.2	$x = 24 A$ $Mean = \frac{300}{10}$ $Mean = 30 \checkmark CA$	CA from 9.3.1 $\frac{300}{10}:1Mark$	
		Answer : 1 Mark	(2)
			[13]
		TOTAT.	140
		TOTAL:	140